Cost-Reduction Strategies Developed by Various Photobioreactor Manufacturers | Company | Cost-reduction strategy | Key strategy | |-------------------------------------|---|---| | Algasol
Renewables SL
(Spain) | Algasol Renewables has successfully launched its novel and flexible polymer photobioreactor with a fully integrated internal aeration system. The new internal aeration system has lowered production cost of algae oil with 10% and the results in terms of productivity and biomass density are very promising. | Maximum scalability, a low-
cost material and design, a
large reactor volume and an
internal aeration system | | Solix Biofuels
(USA) | The AGS system comprises a network of thin, vertical panels buoyantly supported in a shallow water bath. The algal culture is contained in these panels; the vertical orientation provides "extended surface area" which allows illumination of more surface area at lower intensity per unit area, thus maximizing photosynthetic efficiency. Marginal cost of large-scale production using the current technology is approximately \$1/liter (\$150/barrel); with a defined path to reducing the production cost by half over the next 2-3 years. | Thin, vertical panels that provides "extended surface area" | | W2 Energy (USA) | The SunFilter is a tubular algae bioreactor designed to sequester greenhouse gases. The Sunfilter has optimum light distribution because of the diameter of the tubes and its novel construction. The modular system | Low power ultraviolet lights,
diameter of the tubes for
optimal light distribution. | | | can be built from one unit (cell) to multiple units occupying many acres. • W2's SunFilter (algae reactor) is low cost, scalable, has high productivity, uses less water, has less harmful contamination, and maximizes sequestering of CO2 and other feed gases. | | |-----------------------|---|---| | Simgae™ (USA) | Simgae™ offers a system that makes cost and simplicity the driving variables instead of creating elaborate architectures. The system uses unique thin walled polyethylene tubing, called Algae Biotape®, similar to conventional drip irrigation tubes. All the supporting hardware components and processes involved in Simgae™ are direct applications from the agriculture industry. Re-use of these practices avoids the need for expensive and complex hardware and costly installation and maintenance. Preliminary estimates are that Simgae™ capital costs will be less than \$20k per gross acre and is therefore expected to deliver a roughly 5X - 50X of reduction in capital costs. | Thin-walled polyethylene tubing that avoids the need for expensive and complex hardware | | Bodega Algae
(USA) | Bodega Algae's primary product is a self- contained algae photo bioreactor. The product utilizes proprietary optics to offer efficient, cost effective cultivation of micro algae on a small footprint. | Low-cost internal light
delivery | | | The algae photobioreactor developed by Bodega increases the quantity of light required for efficient algal photosynthesis. Bodega PBR delivers solar energy internally within the photobioreactor. The result is a highly efficient photobioreactor capable of delivering large amounts of algal biomass with minimal use of real estate. | | |-----------------|--|--| | OriginOil (USA) | OriginOil has filed a Patent Cooperation Treaty application for a system that provides efficient light utilization with comparatively low energy cost in algae photobioreactors. The system provides light at closely spaced intervals within a photobioreactor so that light is provided throughout the photobioreactor rather than just at the surface and at the interfaces between culture medium and photobioreactor wall. | Light system at closely
spaced intervals within
a photobioreactor for
optimal light
distribution | | | The invention addresses
challenging problems in the
culturing of microalgae,
including high energy utilization,
fouling of light emitting surfaces,
and diurnal growth cycles. | |